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This lecture

• Facts of economic growth

• Solow model of economic growth

• Steady state, comparative statics, transition dynamics

• Questions

1. Positive - Can the model replicate the facts?

2. Normative - Can welfare be lower / higher under different policies?
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Growth facts

1. Share of income to capital and labor are approximately constant

Labor payments

GDP
≈ 0.65 ,

Capital payments

GDP
≈ 0.35

2. Capital-Output ratio is approximately constant

Capital

GDP
≈ 3

3. Capital per worker and output per worker grow at constant rates

Kt+1/Nt+1

Kt/Nt
≈ γk ,

Yt+1/Nt+1

Yt/Nt
≈ γn

4. Capital grows at a constant rate

Kt+1

Kt
≈ γK
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1. Labor share
Labor share was previously constant but has recently fallen. Lots of research on this
currently!
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2. Capital / Output ratio
Capital/Output and the growth rates of Capital/Worker and Output/Worker are
approximately constant.
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3. Capital- and Output- per worker
Capital/Output and the growth rates of Capital/Worker and Output/Worker are
approximately constant.
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Solow model - Environment

• Technology

- Firms operate CRS technology

Yt = F (Kt, Nt) = Kα
t (AtNt)

1−α

• Household preferences and behavior

- Households have a preference only for consumption

U(Ct, Nt) = Ct

- Households receive income Yt = WtNt +RtKt + Πt, they invest

Ct = (1− ξ)Yt , It = ξYt , Kt+1 = (1− δ)Kt + It

• Resources

- Goods: Yt = Ct + It.
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Competitive factor pricing - Wt

- Firms are competitive

- Profit maximization problem taking prices as given

Πt = max
Kt,Nt

Pt F (Kt, AtNt, )︸ ︷︷ ︸
Yt=Kα

t (AtNt)
1−α

−RtKt −WtNt

• First order condition for Nt

Nt : 0 = Pt ×
{

(1− α)Kα
t (AtNt)

−α
At
}
−Wt

• Result - Under constant returns to scale, competitive pricing of inputs
implies that factor shares equal output elasticities

WtNt
PtYt

= 1− α , Wt = 1− α× PtYt
Nt

Do the same for Kt. Satisfies first pair of growth facts. Verify
Yt = RtKt +WtNt + Πt, with Πt = 0. Given quantities we can read off
prices.
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Competitive factor pricing - Rt

- Firms are competitive

- Profit maximization problem taking prices as given

Πt = max
Kt,Nt

Pt F (Kt, AtNt, )︸ ︷︷ ︸
Yt=Kα

t (AtNt)
1−α

−RtKt −WtNt

• First order condition for Kt

Kt : 0 = Pt ×
{
αKα−1

t (AtNt)
1−α

At
}
−Rt

• Result - Under constant returns to scale, competitive pricing of inputs
implies that factor shares equal output elasticities

RtKt

PtYt
= α , Rt = α× PtYt

Kt

Do the same for Kt. Satisfies first pair of growth facts. Verify
Yt = RtKt +WtNt + Πt, with Πt = 0. Given quantities we can read off
prices.
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Determining quantities

- Initial conditions - {A0, N0,K0}

- Exogenous variables - {At+1, Nt+1}∞t=0 - Given by:

At+1 = (1 + γA)At , Nt+1 = (1 + γN )Nt.

- Endogenous variables - {Kt+1, Yt, Ct, It}∞t=0 - Determined by model:

Yt = F (Kt, AtNt) (1)

Kt+1 = (1− δ)Kt + It (2)

Yt = Ct + It (3)

Ct = (1− ξ)Yt (4)

- Each t, given {At, Nt,Kt}. We have 4 unknowns {Kt+1, Yt, Ct, It}.

- These can be determined by the 4 equations

- The variable Kt+1 evolves endogenously ⇒ Kt+1 = G(Kt, At, Nt)

- Can just focus on this important endogenous state variable
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Determining quantities
Always count equations and unknowns!
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Per-worker

- Production function

Yt = F (Kt, AtNt) = AtNtF

(
Kt

AtNt
, 1

)
= AtNtf

(
Kt

AtNt

)
- Let xt = Xt/AtNt be Xt per efficiency unit of labor

yt = f(kt) = kαt ,
Yt+1

Yt
=
At+1Nt+1yt+1

AtNtyt
= γAγN

yt+1

yt

• Given k0 we have four equations in four unknowns {yt, ct, it, kt+1}

yt = f(kt)

kt+1(1 + γA)(1 + γN ) = (1− δ)kt + it

yt = ct + it

ct = (1− ξ)yt

• Want: Instead of Kt+1 = G(Kt, At, Nt), want kt+1 = g(kt).
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Solution

• Using this we have four equations in four unknowns {kt+1, yt, ct, it}

yt = f(kt)

kt+1(1 + γA)(1 + γN ) = (1− δ)kt + it

yt = ct + it

ct = (1− ξ)yt

• Solving these

kt+1 =
1− δ

(1 + γA)(1 + γN )
kt +

ξ

(1 + γA)(1 + γN )
f(kt) = g(kt) (∗)

• Have we solved the model? Let’s check ...

- Given K0, A0, N0 we know k0 = K0/A0N0.

- From (∗) we then know k1, k2, . . .

- We also know {At, Nt}∞t=1, so we can get {Kt, Nt}, which gives Yt, Ct, It
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Steady-state

• What are the properties of the steady-state of the model?

• Should be able to express all endogenous variables in terms of only
parameters

• Do the comparative statics w/r/t parameters make sense?

• Higher or lower savings rate ξ?

• Higher or lower weight on capital α?
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Steady-state

• Is there some k that solves k = g(k)?

k =
1− δ

(1 + γA)(1 + γN )
k +

ξ

(1 + γA)(1 + γN )
f(k)

• Rearranging and using γAγN ≈ 0

k =
ξ

γA + γN + δ
f
(
k
)

[Fixed point equation]

• In the case that f(k) = k
α

: [Function only of parameters! {ξ, γA, γN , δ, α}]

k =
ξ

γA + γN + δ
k
α → k =

(
ξ

γA + γN + δ

) 1
1−α

• Comparative statics

- Increasing in ξ, decreasing in γA, γN , δ.

- Convex in ξ, less so if α is smaller → Increasing in α
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Transition dynamics around steady state

• Is it stable?

kt+1 = g(kt) =
1− δ

(1 + γA)(1 + γN )
kt +

ξ

(1 + γA)(1 + γN )
f(kt)

• Linearize around steady state

kt+1 ≈ g(k̄) + g′(k̄)(kt − k̄)

• Using k̄ = g(k̄)

k̂t+1 ≈
〈
g′(k̄)k̄

g(k̄)

〉
k̂t , k̂t :=

kt − k̄
k̄

So if εg,k < 1, then the gap from steady-state shrinks |k̂t+1| < |k̂t|.

∗ Show that this is stable iff the elasticity εf,k < 1. What parameter

determines this? Conclude that growth k̂t is higher the further away
from steady-state. Compare U.S. vs. Japan after WWII
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Transition dynamics around steady state

• How is growth related to distance from steady state?

kt+1 = g(kt) =
1− δ

(1 + γA)(1 + γN )
kt +

ξ

(1 + γA)(1 + γN )
f(kt)

• Linearize around kt

kt+1 ≈ g(kt) + g′(kt)(kt+1 − kt)

• Using kt+1 = g(kt) and kt = g(kt−1)

∆ log kt+1 ≈
〈
g′(kt)kt
g(kt)

〉
∆ log kt , ∆ log kt+1 ≈

kt+1 − kt
kt

So if εg,k < 1, then growth rate declines: |∆ log kt+1| < |∆ log kt|.

∗ Show that if yt = kαt , then |∆ log yt+1| < |∆ log yt|.
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Capital per worker
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Steady state
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Transition dynamics
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Steady state - Intuition
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Dynamics following a shock
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Dynamics following a shock
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Positive implications - Growth facts
1. Share of income to labor is constant and Wt grows at constant rate

WtNt
Yt

= 1− α ,
Wt+1

Wt
=

(1− α)Yt+1/Nt+1

(1− α)Yt/Nt
= γA

2. Capital-Output ratio is constant

Kt

Yt
=
Kt/AtNt
Yt/AtNt

=
k

f(k)

3. Capital per worker and output per worker grow at constant rates

Kt+1/Nt+1

Kt/Nt
=
At+1

At
× Kt+1/At+1Nt+1

Kt/AtNt
= γA

k

k
= γA

Yt+1/Nt+1

Yt/Nt
= · · · =

(
At+1

At

)α
×
(
Kt+1/Nt+1

Kt/Nt

)1−α

= γA

4. Capital grows at a constant rate

Kt+1

Kt
= · · · = (1 + γA)(1 + γN )

∗ γA > 0 key for economic growth! Not ξ or γN
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Normative implications - Optimal savings
• What value k

∗
maximizes steady-state consumption per worker

c∗ = max
k

y
(
k
)
− i
(
k
)

= max
k

f
(
k
)
−
[

(1 + γA) (1 + γN )− (1− δ)
]

︸ ︷︷ ︸
≈γA+γN+δ

k

• The golden rule level of capital satisfies

k : f ′
(
k
∗
)

= (γA + γN + δ)

• In the Cobb-Douglas case: εf,k = α

f ′
(
k
∗
)
k
∗

f
(
k
∗
) = (γA + γN + δ)

k
∗

f
(
k
∗
) =⇒ k

∗
=

(
α

γA + γN + δ

)
f(k
∗
)

• Recall that the steady state level of capital is given by

k =

(
ξ

γA + γN + δ

)
f
(
k
)

• ∴ the golden rule level of savings ξ∗ that implements k
∗

is

ξ∗ = α

• Share of income saved and invested = Share of income paid to capital
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Golden rule
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Golden rule
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Data
Are countries all converging to the same k?
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Data
Are countries all converging to the same k?
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Data
Are countries all converging to the same k?
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Data
Are countries all converging to the same k?
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Covered

• Growth facts

• Steady state comparative statics, Transition dynamics

- How does the steady state level of k depend on the parameters of
the economy {ξ, γA, γN , α, δ}?

- From an initial k0 ≶ k what are the dynamics of kt?

- From an initial k0 = k, if a parameter changes, what happens to kt?

- How do these answers depend on parameters?

• Next

- TA - More practice linearization
- Lecture - Endogenizing savings ... the neo-classical growth model.
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