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This lecture

® Motivate dynamic programming approach
- Neoclassical model under uncertainty — RBC model
® Terminology

- State variables

- Value function

Policy function

- Markov chain

® Next: (i) Methods, (ii) Labor supply, (iii) RBC model



Environment - Centralized / Deterministic
Time - Discrete t =0,1,2...
Agents - Representative household with N workers

Goods - One good can either be used for consumption or investment
et =y

Endowments - Household owns the initial capital stock kg

Preferences - Utility of the household at date 0 is
> Blu(e) , Be(01)
t=0

Technology - Constant returns to scale production technology y; = f(k;). Capital depreciates
at rate §

ki1 =0 —=0)ke+4: , 0€]0,1]



Problem

Household chooses sequences of {ct, kiy1}52

max Z Blu(cy)
t=0

subject to the series of constraints

Ct+kt+1§f(kt)+(1_5)kt ) t:071727"'

and initial conditions

ko >0



Environment - Centralized / Stochastic
Time - Discrete t =0,1,2...
Agents - Representative household with N workers

Goods - One good can either be used for consumption or investment
ct+ir =y

Endowments - Household owns the initial capital stock kg

Preferences - Utility of the household at date 0 is

E[)

Zﬂtu(ct)‘| ) B € (07 ]-)
t=0

Technology - Constant returns to scale production technology y; = A, f(k:), where given Ay,
{A;}72, is given by stochastic process:
logAiy1 = (1—p)log A+ plog Ay + e141 €41~ N(0,0.)
~—
‘Shock’

Capital depreciates at rate ¢



Why?
Kydland and Prescott (1982)
® In the data we observe large, persistent, fluctuations in A;
Y, = AKMNT®
log; = alogK;+ (1 —a)log Ny + log A;.
® Q: Can ‘shocks’ to A; account for business cycles in the NC model?
Why do we care?
® As we learned in Lecture 4 ... NC model: (i) Always in equilibrium, (ii) Welfare theorems hold

® 1970s ‘Keynesian’ view: Recessions represent the economy being ‘out of equilibrium’ in some
way. Government can intervene.

® Normative - If the answer is ‘yes’ then recessions are the economy’s natural responses to
exogenous shocks

® Positive - We have a quantitative theory of business cycles!
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Cyclical components, scaled by std[GDFf] (HP filter)

Business cycles - US data
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Business cycles - US data

A, Output B. Hours
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Business cycles - US data

Volatility Covariance  Persistence
std[zy]/std[gy]  corr(Zy, §r)  corr(Ty, Ty—1)
Output (GDP) 1 1 0.86
Consumption Ct 0.81 0.87 0.87
Investment it 4.52 0.90 0.83
Hours y 0.98 0.84 0.86

Consumption - Less volatile than output
Investment - Much volatile than output
Hours - As volatile as output

All series highly correlated with output



Problem in a not very useful format
Household chooses sequences of {ct, kry1}52,

> 5tu(0t)]

max Eg
t=0

subject to the sequence of constraints  Set 6 =1
ct+ ke <e®f(ky) , t=0,1,2,...

and initial conditions
ko >0, ag

and stochastic process for a; = log A; — log A
ar+1 = pay +e41 , €41 ~ N(0,0¢)
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Concept - State

A state sy is a finite vector of variables pre-determined at date-t

- Pre-determined - Values are realized before actions of saving / consumption occur

A history st is a t-period sequence of past states

t t—1
S = <80a517"'75t7178t> = (S ast)

Probability distribution 7 (s*) € [0,1] is defined over histories
7(st) = m(sy, 8071 = W(St|8t_1)ﬂ'(8t_l) = ﬂ(st|8t_1)7r(st_1|st_2) . 71'(51|80)7T(so)

What is in the state vector?

® Good question!
® For now we remain agnostic.
e Use s’ as a way for accounting in the household problem

® Dynamic programming approach will answer this question precisely!
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Concept - State

A state s; is a finite vector of variables pre-determined at date-t

A history stisa t-period sequence of past states

t t—1
s = (SOasla"'7st—l7St> = (S 7St)

Probability distribution 7(s') € [0, 1] is defined over histories
7(51) = (0, 8°71) = m(selst (s ) = (el (s ]t 2) (1 ]0)
Stationarity
® We will study models where 7(s¢+1|s") depends only on s,
® If s, = ‘Low’, then no matter what date ¢ is we have the same
m(s¢r1 = ‘High'|sy = ‘Low")

® The state is a Markov process - The probability distribution over states tomorrow,
depends only on the state today
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Concept - State

A state s; is a finite vector of variables pre-determined at date-t

A history st is a t-period sequence of past states

t t—1
s = (30a817"'78t71>5t) = (5 7St>

Probability distribution 7(s') € [0, 1] is defined over histories
m(st) = m(ss, 8771) = w(se|s ) w(st L) = w(sy|si_1)m(s1-1]50—2) ... 7(51]50)
Stationarity
® We will study models where 7(s;1|s:) does not depend on ¢
® If s; = ‘Low’, then no matter what date ¢ is we have the same
7(s¢r1 = ‘High'|s; = ‘Low")

® The state is a Markov process - The prob. distribution over states tomorrow, depends
only on the state today
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Concept - State - Example
States
a; € {aL, aH}
Stochastic process - Consider a simple first-order Markov process
Wa(aL|aL) = Wa(aH\aH) =090 , and
Ta(aa®) = m(a®|al) =0.10
Initial condition

aozaH

Probability distribution over states m,(at|ap):
- What is m,(a|ag), when a' = (a'?,a’? a')?

7a b
ma(a’) = 0.90 x 0.90 = 0.81
- What is 7, (a'|ag), when a' = (al,al, a®)?
ma(a’) = 0.10 x 0.90 = 0.09
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Problem in a not very useful format
Household chooses sequences of {ct, kry1}52,

> 5tu(0t)]

max Eg
t=0

subject to the series of constraints

ct+ ke <e®f(ky) , t=0,1,2,...
and initial conditions

ko >0, ag
and stochastic process for a;

ar+1 = pay + €41, €41 ~ N(0,0¢)
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State-contingent Problem

Chooses state-contingent sequences {c;(s?), kt+1(st)}fio Vst

>y sl

t=0 st|sg

so)uler(s"))

{Ct (S kt+1 St

subject to the series of state-contingent constraints
t k, t < at(st) k‘ t . 1.2
Ct(8)+ t+1(8)7€ f( t(S)) ’ t_07 gLy ey
and initial conditions
ko(so) >0, ao(so)

and stochastic process for a;

t—l—l)

arp1(s™) = pa(sh) + e, e ~ N(0,00)
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Problem - Lagrangean

® Constrained optimization problem

L= Y fhalstsoulen(s)

t=0 st|sq
£ 377 s [ flha(5")) — en(s) — ki (s
t=0 st|sq

® First order necessary conditions
c(sh) s M(s') = w(s']s0) B (ci(sh))
Rea(s) s X(sh) = ) Aepa(sern, s f (ki (sD)

St41]80
® Combining conditions
(s’ [so)u'(er(sh) = B Y ws" s (copa (s F (Ruga (s))
EE
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Problem - Lagrangean

Combining conditions

m(s'[s0)u’ =p Z (5141, 5'[50)u

st+1|so
Conditional probabilities
(5141, [s0) = m(se41]s")m(s"[s0)

Using this

"(er1 (s f (kega (s")

=B Y wlsenls) (corr (s (ke (s)

St+1‘sf

More simply
W (er(s") = BE [/ (copr (8" ))F (e (51)
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Equilibrium conditions
For all t =0,1,2,..., and for all st|sg

. Euler equation

=8 Y wserals)u (o () f (ke (s)

St+1 ‘Sf

. Resource constraint

co(s") + ki (s) < e f k(1)
. Transversality condition

Tim BT (s  so)ut (er (7)) kr 4 (s7) = 0
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Equilibrium conditions
For all t = 0,1,2,..., and for all s?|sg

. Euler equation

=8 Y mlserals ) (o () f (ke (s)

st+1\st

. Resource constraint

cr(s') + ke (s') < e f(lky(s")

. Transversality condition

lim BTE [u/(CT)kT+1‘SO:| =0

T—o0
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Equilibrium conditions
For all t = 0,1,2,..., and for all s?|sg

. Euler equation

=8 Y mlserals ) (o () f (ke (s)

st+1\st

. Resource constraint

cr(s') + ke (s') < e f(lky(s")

. Transversality condition

lim BTE [u/(CT)kT+1‘SO:| =0

T—o0

Still lots of questions!

- State variables: What is in s;7

- How do decisions depend on s' and ? Is it ¢;(s') or ¢;(s;) or c(s¢)?
- How to solve for c;(s?), ksy1(s?)?
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Value function

e The value function Vi(st) is the expected present discounted value of the household’s utility
under the optimal policy for consumption and capital, where this value is computed after the
realization of the history st, but before the choice of ci(st) and kyy1(s?)

® Period 0, state sg value function:

VU(SO) . {cr(st%afl(st)} Z Z ﬁtﬂ(3t|50)u(0t(3t))

t=0 st|sq

subject to the series of state-contingent constraints

co(s)) + key1(st) = e™CVf(ky(sh)) , V> 0,Vst|s°
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Value function
® Period 0, state sg value function: Split up into ¢t =0 and ¢ > 1

Vo(sg) = max  u(co(s
0(s0) e (co(s0))

{ece(st) ’Ct+1(8 Z Z 5t |SO ( t))

t=1 st|so

subject to the series of state-contingent constraints

co(so) + k1(so) = e f(ko(so))

cr(s) + ki (sh) = e fk(sh)) . VE>1,Vst]s1, 50
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Value function
® Period 0, state sg value function: 7(s|sg) = 7(s'[s1)7(s1]50)

Vo(so) = max  u(co(s
0(s0) e (co(s0))

t
{ce(s?) Ict+1(3 Z Z 5 “51

t=1 st|so

1]s0)u(e(s"))

subject to the series of state-contingent constraints

co(so) + k1(so) = e f(ko(s0))

ci(s) + ki (sh) = e fk(sh)) . VE>1,Vst]s1, 50
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Value function

® Period 0, state so value function: »_ .\ =D 00 Do s,

Vo(so) = max  u(co(s
0(s0) xS (co(s0))

+Z (s1]80) (erl t)ktﬂ(st)} ZZﬂt s'[s1)u(ce(s"))

s1]s0 t=1 st|s;

subject to the series of state-contingent constraints

co(s0) + ki(s0) = €00 f(ko(s0))

(s + kia(sh) = e f(ky(sh) , Wt > 1,Vss1, s0
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Value function
® Period 0, state sy value function: » 7, 3" =352 5

Vo(so) = max  u(co(s
0(s0) e (co(s0))

+5 Z (s1]s0) nax Z Z Br(stls1)ule(s"))

)kt (
s1]s0 i+ t=0 st|sy

subject to the series of state-contingent constraints

co(so) + k1(so) = e f(ko(s0))

cr(s) + ki (sh) = e fk(sh)) . VE>1,Vst]s1, 50
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Value function

® Period 0, state sg value function:

Vo(so) = ma; u(co(s
0(s0) e (co(s0))

+BZ 81|80 { (tgr}‘x(t)} Zzﬁf J{|‘51 ( t))
ci(s t+1(s

s1]s0 st|sy t=0

subject to the series of state-contingent constraints

co(so) +ki(so) = €0 f(ko(s0))

(s + keyr(sh) = €6V f(ky(sh)) , ¥t >1,Vs'|s;
The terms in red are exactly Vi (sq).
(Go back and check the definition of Vj(sg)).
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Value function

® Period 0, state sg value function:

Vo(sg) = max (co(s0)) + s1ls0)Vi (s

0( O) co(so),k1(so) O 0 ﬂg;;o 1| 0 ! l)
subject to the constraint

colso) +ki(so) = €260 fko(so))

® Now we can determine what should be included in s

® We need to know everything such that we can (i) solve the household’s decision given sq, (ii)
fully determine s; so that we can solve their problem again tomorrow.

28



Value function

Suppose that we conjecture that the state is s; = (ay, k¢)

Let’s try
Vo(ao, ko) = meI\CX u(co) + 5 E m(ai, ki | ao, ko)Vi(ar, k1)
Co,R1

a1,k1 | ao,ko

subject to the constraint

co+ki = e f(ko)
The k; part of s; is determined by the choice of capital today ki (ag, ko)
The a; part of s is drawn from the stochastic process for a

a' ~ ma(a|a) i.e. Problai|ag] = m(ai]ag)
Therefore the probability of (ai, k1) given (ao, ko) is

7(ai, kil|ag, ko) = 1[k" = k1(ao, ko)] X 7a(a’|a)

29



Value function

e Conjecture that s; = (a4, k)

Vo(ao, ko) = InE]le U(Co) + ﬂ Z Wa(a1|a0)V1(a1, k’l)
Co,R1

a1lao
subject to the constraint

Co + kl = €a0f(ko)

30



Value function

e Conjecture that s; = (a4, k)

Vo(ag, ko) = mz}gx u(co) + B Z 7a(a1]ao)Vi(ar, k1)
Co,R1

a1lao
subject to the constraint

co + k1 = eaof(ko)

® In our example, had the following stochastic process:
ap = pag+e , €1 ~N(0,0.)

= m(ailag) = Prob[a1|a0]:¢<a1—0a0>

O¢

where ¢(-) is the probability under the standard normal distribution
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Value function
® Note that time ¢ plays no role in the value function

® All of the decisions depend only on the state, not the date ¢ that decisions happen

® So we can drop time subscripts on V;(a¢, k) and on variables

V(a,k)—maxu +BZ7Ta V(d, k)

/Ia

subject to the constraint

c+k = e“f(k)

32



Two problems that deliver same solution

. Bellman equation

V(a,k;)—maxu +BZ7Ta (a' k")

@la
subject to the constraint
c+k = ef(k) — cla k), K(a,k)

. Sequence problem

Vo(so) := Bt (st|so)ulce(s
(s0) = max ZZ [so)uu(ea(s"))
subject to the series of state-contingent constraints

() + koyr(sh) = e™CVf(ky(sh)) , VE>0,Vssg
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Principle of Optimality
® Result - Take a plan ¢;(s?) that solves the sequence problem. Then this sequence must also

satisfy the Bellman equation.

“An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision” - Bellman (1957), “Dynamic Programming”

. if given the state today, you are to make a particular decision, then tomorrow—if the
state is the same—you should make the same decision

® Further result - This is a necessary condition. “If [plan] solves sequence, then [plan] solves
the Bellman”. Under additional, easy to verify conditions, the Bellman equation is necessary
and sufficient

® Analogy - Like sub-game perfection, with an infinite horizon!

® Analogy - Makes perfectly clear the notion of a ‘sunk cost fallacy’. Past actions only affect
decisions today in so far as they are coded into the current period state variables s;.
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Principle of Optimality
Today, I solve a problem that determines how the state evolves
Given (ay, k¢) I choose ¢;, which determines ki1 1
Tomorrow, after the resolution of some uncertainty, I am faced with the exact same problem
Given (at41, ki4+1) I choose ¢ y1, which determines kyyo
The policy function (optimal policy) gives the optimal decision in state s
cla, k) K'(a,k)
The value function gives the PDV of utility under the optimal policy
Vie,k)=>" > B'wlas, k)u(c(ar, kr))
t=0 (ay,k:)|(a,k)

Result - The sequence ¢;(s') is generated by a policy function c(s) (!!!)
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Example 1 - A ‘Cake-eating’ problem

® Sequence problem

max Z Bu(cy)

{ee}Zo 455
subject to

Wt+1 = R(Wt — Ct) vt , Wy>0 Wt+1 >0
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Example 1 - A ‘Cake-eating’ problem

® Sequence problem

max Z Bu(cy)

{ee}iZo 125
subject to
W1 =BRWy—¢) Yt , Woy>0 , Wi >0
® Bellman equation
V(W) = max u(c) + V(W)
subject to
W' =RW —-¢) , W >0
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Example 2 - A job search problem

An individual begins period ¢t with an offer of a job at wage w

She can accept the job
- In which case she works forever at wage w; = w

She can reject the job

- In which case she receives unemployment payment b
and at beginning of ¢ + 1 she draws a new job offer w’ ~ F(w) where w’ € [0, 00)

When working her consumption is ¢; = wy, when unemployed ¢; = b

Let V(w) be the expected PDV of lifetime utility under the optimal policy

V(w):=E Zﬂtu(ct)
=0

38



Example 2 - A job search problem

An individual begins period ¢t with an offer of a job at wage w

She can accept the job
- In which case she works forever at wage w; = w

She can reject the job

- In which case she receives unemployment payment b
and at beginning of ¢ + 1 she draws a new job offer w’ ~ F(w) where w’ € [0, 00)

When working her consumption is ¢; = wy, when unemployed ¢; = b

Let V(w) be the expected PDV of lifetime utility under the optimal policy

Z Blu(ct)
t=0

Result  V(w) satisfies the Bellman equation

V(w):=E

V(w) = max{ % , u(b) +/OOO V(w/)dF(w’)}
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General problem
. Bellman equation

V(z,2) = max F(z,2,2) + OE [V(x'7 ')

d
subject to the constraint

2 e T(z,2)

. Sequence problem

V(xo,20) == max E lz ﬂtF(xt;Ztvxt+1)‘|

{ze41}i20 =0
subject to the sequence of state-contingent constraints

Ti41 € F(l‘t, Zt)
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General problem
1. Bellman equation

V(z,2) = max F(z,2,2) + fE [V(x', ')

d
subject to the constraint
2 €T (z,2)

® Questions

- If we have V', how do we find the policy z’'(z, 2)?
- How do we find V?

- How do we handle competitive equilibrium problems?
- Lucas (1972), Mehra Prescott (1982)
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END
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