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This lecture

• Deriving the Euler equation - PS4

• Existence and uniqueness of value function

• Solving for the value function

• PS4 - Examples of writing out Bellman equations, solving for Euler equation

• Next:

L8 Adding labor supply to the neoclassical model

L9 RBC model

L10 Asset pricing (Lucas, 1972)

2



Bellman equation
• Bellman equation - Writing E[f(z′)|z] =

∑
z′ πz(z

′|z)f(z′)

V (x, z) = max
x′

F (x, x′, z) + βE [V (x′, z′)|z]

subject to the constraint

x′ ∈ Γ(x, z)

1. First order condition - Differentiate the Bellman equation for x′

F2(x, x′, z) + βE [V1(x′, z′)|z] = 0

2. Envelope condition - Differentiate the Bellman equation for x

V1(x, z) = F1(x, x′, z)

• Combined → Euler equation

F2(x, x′, z) = βE [F1(x′, x′′, z′)|z] → x′(x, z)
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Example - Neoclassical model
• Bellman equation - (x, x′, z)→ (k, k′, a)

V (k, a) = max
k′

u
(
af(k) + (1− δ)k − k′

)
+ βE [V (k′, a′)|a]

subject to the constraint

k′ ∈ [0, af(k) + (1− δ)k]

1. First order condition

−u′(c) + βE[V1(k′, a′)|a] = 0

2. Envelope condition

V1(k, a) = u′(c) [af ′(k) + (1− δ)]

• Combined → Euler equation

u′(c) = βE[u′(c′) [a′f ′(k′) + (1− δ)] |a] → k′(k, a)
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Example - Cake eating w stochastic R
• Bellman equation

V (W,R) = max
W ′

u(RW −W ′) + βE [V (W ′, R′)|R]

subject to the constraint

W ′ ∈ [0, RW ]

1. First order condition

−u′(c) + βE[VW (W ′, R′)|R] = 0

2. Envelope condition

VW (W,R) = Ru′(c)

• Combined → Euler equation

u′(c) = βE[R′u′(c′)|R] → W ′(W,R)
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What about the value function?

• This still doesn’t solve our problems, we keep on differentiating V (x, z) but ...

- Does the value function V (x, z) exist?

- Is the value function unique?

- Is the value function differentiable?

- How do we compute the value function?

• Luckily for us, all of these questions are interrelated!

• Constructive proof of existence and uniqueness of V (x, z) provides a recipe for how to
compute it

• Stokey, Lucas and Prescott (1989) - “Recursive Methods in Economic Dynamics”
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Fixed point
• Recall the Solow model with T : R+ → R+

kn+1 = T (kn) := (1− δ)kn + sf(kn)

• Steady state was a fixed point k such that

k∗ = T (k∗)

• Suppose we start off at some arbitrary k0 > 0 then

k1 = T (k0)

k2 = T (k1) = T 2(k0)

• Found that

lim
n→∞

|kn − kn−1| = lim
n→∞

∣∣T n(k0)− T n−1(k0)
∣∣ = 0

• Then

lim
n→∞

Tn(k0) = k∗
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Fixed point
• Imagine we had T : Functions→ Functions

Vn+1 = T (Vn) := max
x′

F (x, x′, z) + βE
[
Vn(x′, z′)|z

]
• Value function is a fixed point V ∗ such that

V ∗ = T (V ∗)

• Suppose we start off at some arbitrary V0 then

V1 = T (V0)

V2 = T (V1) = T 2(V0)

• And it was true that

lim
n→∞

||Vn − Vn−1|| = lim
n→∞

∣∣∣∣T n(V0)− T n−1(V0)
∣∣∣∣ = 0

• Then

lim
n→∞

Tn(V0) = V ∗
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Contraction mapping theorem - Part I
• Let T map bounded functions to bounded functions

T : B(X)→ B(X) , f ∈ B(X) , f : X → R
• If T satisfies Blackwell’s sufficient conditions:

1. Monotonicity
Let f, g ∈ B(X) such that f(x) > g(x), then

T f(x) > T g(x)

2. Discounting
There exists some β ∈ (0, 1) such that

T (f + a)(x) ≤ T f(x) + βa

• Then T is a Contraction Mapping

sup
x∈X
|T f(x)− T g(x)| ≤ β sup

x∈X
|f(x)− g(x)|
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• Let T map bounded functions to bounded functions

T : B(X)→ B(X) , V ∈ B(X) , V : X → R

• Suppose that T satisfies Blackwell’s sufficient conditions:

1. Monotonicity - Let V (x, y) < V ′(x, y) for all (x, y) ∈ X

max
x′

F (x, x′, y) + βE[V (x′, y)] ≤ max
x′

F (x, x′, y) + βE[V ′(x′, y)]

2. Discounting

T (V + a)(x, y) = T V (x, y) + βa

• Then T is a Contraction Mapping

sup
(x,y)∈X

|T V (x, y)− T V ′(x, y)| ≤ β sup
(x,y)∈X

|V (x, y)− V ′(x, y)|
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Contraction mapping theorem - Part II
• If T : B(X)→ B(X) is a contraction mapping with modulus β:

1. T has a unique fixed point V ∗ ∈ B(X) such that T V ∗ = V ∗

2. For any V0 ∈ B(X),

sup
(x,y)∈X

∣∣∣T nV0(x, y)− V ∗(x, y)
∣∣∣ ≤ βn sup

(x,y)∈X

∣∣∣V0(x, y)− V ∗(x, y)
∣∣∣

for n = 0, 1, 2, . . .

• Let S ⊂ B(X) be a closed set, then if T (S) ⊂ S, then V ∗ ∈ S

- If T maps continuous fns to continuous fns then V ∗ is continuous

- If T maps increasing fns to increasing fns then V ∗ is increasing

- If T maps concave fns to concave fns then V ∗ is concave
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Example - Neoclassical model
• Bellman equation

V (k) = max
k′

u
(
f(k) + (1− δ)k − k′

)
+ βV (k)

subject to the constraint

k′ ∈ [0, f(k) + (1− δ)k]

1. First order condition

−u′(c) + βVk(k′)] = 0

2. Envelope condition

V (k) = u′(c) [f ′(k) + (1− δ)]

• Combined → Euler equation

u′(c) = β[z′f ′(k′) + (1− δ)] → k′(k)
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Example - Neoclassical model

• Bellman equation

V (k) = max
k′

u
(
f(k) + (1− δ)k − k′

)
+ βV (k′)

subject to the constraint

k′ ∈ [0, f(k) + (1− δ)k]

- Value function is bounded

k̄ = arg max
k

f(k)− δk

V : [0, k̄]→ R+ , V (k) ≤ u(f(k∗) + (1− δ)k∗)
1− β

, V ∈ B([0, k̄])
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Example - Neoclassical model
• Bellman equation
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(
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)
+ βV (k′)
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V (k) = max
k′

u(f(k) + (1− δ)k − k′) + βV (k′)

= u(f(k) + (1− δ)k − k∗V (k)) + βV (k′)

≤ u(f(k) + (1− δ)k − k∗V (k)) + βṼ (k′)

≤ u(f(k) + (1− δ)k − k∗
Ṽ

(k)) + βṼ (k′)

= max
k′

u(f(k) + (1− δ)k − k′) + βṼ (k′)

V (k) ≤ Ṽ (k)
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Example - Neoclassical model

• Bellman equation

V (k) = max
k′

u
(
f(k) + (1− δ)k − k′

)
+ βV (k′)

subject to the constraint

k′ ∈ [0, f(k) + (1− δ)k]

- Discounting

T (V + a)(k) = max
k′∈[0,f(k)+(1−δ)k]

u(f(k) + (1− δ)k − k′) + β[V (k′) + a]

= max
k′∈[0,f(k)+(1−δ)k]

u(f(k) + (1− δ)k − k′) + βV (k′) + βa

T (V + a)(k) ≤ V (k) + βa
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Example - Neoclassical model

- Special case: u(c) = log c, f(k) = kα, δ = 1

- Guess an initial value function V0(k′) = 0

- Solve optimization problem

V1(k) = max
k′

log
(
kα − k′

)
+ β × 0

• First order condition

k′ = 0

• Substitute back

V1(k) = log(kα) = α log k
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Example - Neoclassical model

- Special case: u(c) = log c, f(k) = kα, δ = 1

- With the updated value V1(k′) = α log k′

- Solve optimization problem

V2(k) = max
k′

log
(
kα − k′

)
+ βα log k′

• First order condition

− 1

kα − k′
+ βα

1

k′
= 0 → k′ =

βα

1 + βα
kα

• Substitute back

V1(k) = log

(
kα − αβ

1 + αβ
kα
)

+ βα log

(
βα

1 + βα
kα
)

V1(k) = α(1 + βα) log k + log
1

1 + βα
+ αβ log

βα

1 + βα
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Example - Neoclassical model

- Special case: u(c) = log c, f(k) = kα, δ = 1

- With the updated value V1(k) = α(1 + βα) log k + log 1
1+βα + αβ log αβ

1+βα

- Solve optimization problem

V2(k) = max
k′

log
(
kα − k′

)
+ βV1(k′)

• First order condition

− 1

kα − k′
+ βα(1 + βα)

1

k′
= 0 → k′ =

βα+ (βα)2

1 + βα+ (βα)2
kα

• Substitute back

V2(k) = α(1 + βα+ (βα)2) log k + β log
1

1 + βα
+ βα2 log

βα

1 + βα

+ log
1

1 + βα+ (βα)2
+ (βα+ (βα)2) log

βα+ (βα)2

1 + βα+ (βα)2
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Example - Neoclassical model
• After n iterations

Vn(k) = α(1 + αβ + (αβ)2 + · · ·+ (αβ)n) log k + Const.

• CMT: Iterating forward as n→∞ we know that Vn(k)→ V (k)

V (k) =
α

1− αβ
log k + Const.

• Now can solve for the policy function

V (k) = max
k′

log
(
kα − k′

)
+ β

α

1− αβ
log k′ + β Const.

• First order condition

1

kα − k′
=

αβ

1− αβ
1

k′
→ k′(k) = αβkα , c(k) = (1− αβ)kα

• Recognize the solution: log kt+1 − log k̄ = α
[
log kt − log k̄

]
→ k̂t+1 = αk̂t
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Computational receipe - ‘Algorithm’
Algorithm

• Guess V0

• Solve for k′(k) given V0

• Compute V1

• Check if max |V1 − V0| < ε
• If so, done.
• If not, update V0 = V1

Example

• Set up a grid for k ∈ {0, k1, . . . , kN} where kN = 3.5× k̄
• Restrict choices of k′ to lie on the grid
• Starting guess V0(k) = 0
• Solve for V (k) and k′(k)
• Compare solution to the approximate linear solution that we found using our earlier

approach: k̂′ = λ1k̂.
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Value function and policy function

Vn(k) = max
k′∈Γ(k)

u(c) + βVn−1(k) → k′n(k)
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2. Dynamics - Local dynamics
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Homework - Cake eating

• An individual has a cake of size x. Each period they choose how much of the cake to
consume. Any cake that is not consumed grows at rate R > 1 between periods. The
individual has utility function u(c) = log c and discounts the future at rate β < 1.

• Write down the sequence problem

• Write down the Bellman equation V (s) where s is the state vector

• Use the FOC(s) and envelope condition to derive the Euler equation

• Using a starting guess of V0(s) = 0, solve for the optimal policy and use this to iterate
backward to V1(s) and V2(s)

• Use this to establish an expression for Vn(s)

• Show that V satisfies the sufficient conditions such that T V is a contraction (write out T ).

• What can we then say about limn→∞ Vn(s)?

• Use this to derive the policy function W ′(s)
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END
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