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This lecture

Issues with Solow model

Neoclassical model

- Ramsey (1928), Cass (1965), Koopmans (1965)

Optimality conditions

Steady state + Transition dynamics

Next: Decentralized economy, Welfare Theorems, Government
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Recap of Solow model
• Equilibrium conditions (without growth!)

yt = Af(kt) = Akαt

yt = ct + it

kt+1 = (1− δ)kt + ξf(kt)

ct = (1− ξ)yt
• Solution

kt+1 = g(kt)

• Steady state

k = g(k) , c = f(k)− δk −→ Golden rule −→
(
k
∗
, c∗
)

• Transition dynamics

k̂t+1 =
∂g(k) k

∂k
k̂t , ĉt =

∂f(k) k

∂k
k̂t = αk̂t

3



Issues with Solow model

• Positive (descriptive)

• Within country over-time differences in ŷt

• Cross country differences in ŷt as functions of parameters {ξ, δ, α,A}

• Normative

• Households don’t optimize → Bad for policy

• E.g. If A increases for a few periods, shouldn’t ξ respond? Maybe households would like
to save some of a temporary increase in their income?
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Issues with Solow model
• Neoclassical model

• Allow households to make savings decisions
• Control the division of output into consumption and investment

ct + it = f(kt)

kt+1 = (1− δ)kt + it
• Economy of optimizing individuals → Good for policy
• Time series of endogenous variables {ct, yt, kt, it}∞t=0 determined by parameters and

initial conditions.
• Keep other features of Solow → Still match growth facts!

• Work horse model in modern macroeconomics
X + Welfare - Centralized vs. Decentralized economy
X + Labor supply
X + Stochastic processes for At. Real Business Cycle model
X + Heterogeneity. Study inequality.
× + Fiscal policy - ‘Ramsey problem’
× + Monetary policy - ‘New Keynesian models’. ‘Nominal’ Business Cycle model
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Environment - Centralized
• Time - Discrete t = 0, 1, 2 . . .
• Agents - Representative household with N identical workers
• Goods - One good can either be used for consumption or investment

Ct + It = Yt

• Preferences - Utility of the household at date 0 is

∞∑
t=0

βtU(Ct, Nt) , β ∈ (0, 1) , U(Ct, Nt) = u(Ct/Nt)

• Technology - Constant returns to scale production technology

Yt = AF (Kt, Nt) = AKα
t N

1−α
t .

Capital depreciates at rate δ

Kt+1 = (1− δ)Kt + It , δ ∈ [0, 1] , K0 > 0
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Environment - Centralized
• Time - Discrete t = 0, 1, 2 . . .
• Agents - Representative household
• Goods - One good can either be used for consumption or investment

ct + it = yt

• Preferences - Utility of the household at date 0 is

∞∑
t=0

βtu(ct) β ∈ (0, 1)︸ ︷︷ ︸
Rate of time preference

• Technology - Constant returns to scale production technology

yt = Af(kt) = Akαt .

Capital depreciates at rate δ

kt+1 = (1− δ)kt + it , δ ∈ [0, 1] , k0 > 0
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Environment - Centralized
• Time - Discrete t = 0, 1, 2 . . .
• Agents - Representative household
• Goods - One good can either be used for consumption or investment

ct + it = yt

• Preferences - Utility of the household at date 0 is

∞∑
t=0

βtu(ct) = u(c0) + βu(c1) + β2u(c2) · · ·+ βtu(ct) + . . .

• Technology - Constant returns to scale production technology

yt = Af(kt) = Akαt .

Capital depreciates at rate δ

kt+1 = (1− δ)kt + it , δ ∈ [0, 1] , k0 > 0
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Problem

Household chooses sequences of {ct, kt+1}∞t=0

max

∞∑
t=0

βtu(ct)

subject to the series of constraints

ct + kt+1 ≤ f(kt) + (1− δ)kt , t = 0, 1, 2, . . .

and initial conditions

k0 > 0
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Problem - Lagrangean
• Constrained optimization problem

L =

∞∑
t=0

βtu(ct) +

∞∑
t=0

λt [f(kt) + (1− δ)kt − ct − kt+1]

• First order necessary conditions

ct : 0 = βtu′(ct)− λt
kt+1 : 0 = −λt + λt+1

[
f ′(kt+1) + (1− δ)

]
• Combining conditions

0 = −βtu′(ct) + βt+1u′(ct+1)
[
f ′(kt+1) + (1− δ)

]
u′(ct) = βu′(ct+1)

[
f ′(kt+1) + (1− δ)

]
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Euler equation
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Interpretation - Perturbational method

• Suppose we have the optimal {c∗t , k∗t+1}∞t=0

• Reduce consumption by ε units only today, i.e. at date t

• Loss in utility today is approx. u′(c∗t )ε u(ct) ≈ u(c∗t ) + u′(c∗t )(ct − c∗t )
• Plan: Take ε, invest it in capital, consume proceeds tomorrow

• Two effects tomorrow (i) increase output by f ′(k∗t+1)ε, (ii) increase capital by (1− δ)ε
• Gain in utility tomorrow approx. u′(c∗t+1)[f ′(k∗t+1) + (1− δ)]ε
• If {c∗t , k∗t+1} is optimal, then should be no change in total utility:

0 = −u′(c∗t )ε+ βu′(c∗t+1)
[
f ′(k∗t+1) + (1− δ)

]
ε
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Partial solution

• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

ct + kt+1 = f(kt) + (1− δ)kt

• Initial conditions

k0 > 0
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Transversality condition

Household chooses sequences of {ct, kt+1}Tt=0 Truncated at T <∞

max

T∑
t=0

βtu(ct)

subject to the series of constraints

c0 + k1 ≤ f(k0) + (1− δ)k0 , k0 > 0

c1 + k2 ≤ f(k1) + (1− δ)k1

. . .

cT + kT+1 ≤ f(kT ) + (1− δ)kT

Issue - Household wants kT+1 infinitely negative
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Problem
Household chooses sequences of {ct, kt+1}Tt=0

max

T∑
t=0

βtu(ct)

subject to the series of constraints

ct + kt+1 = f(kt) + (1− δ)kt , t = 0, 1, 2, . . . , T

initial conditions

k0 > 0

and a non-negativity constraint on capital

kt+1 ≥ 0
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Transversality condition
• Constrained optimization problem

L =

T∑
t=0

βtu(ct) +

T∑
t=0

λt

[
f(kt) + (1− δ)kt − ct − kt+1

]
+

T∑
t=0

µtkt+1

• First order necessary conditions

ct : 0 = βtu′(ct)− λt
kt+1 : 0 = −λt + λt+1

[
f ′(kt+1) + (1− δ)

]
+µt

kT+1 : 0 = −λT+µT
• Multipliers and constraints

λt ≥ 0 , 0 = f(kt) + (1− δ)kt − ct − kt+1

µt ≥ 0 , 0 ≤ kt+1

• Complementary slackness conditions

0 = λt

[
f(kt) + (1− δ)kt − ct − kt+1

]
0 = µt

[
kt+1

]
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Transversality condition
• Optimal cT

λT = βTu′(cT )

• Optimal kT+1

µT = λT = βTu′(cT )

• Complementary slackness

βTu′(cT )kT+1 = 0

• The present discounted utility value of ‘left over’ resources must be equal to zero

• We can generalize this to the infinite horizon case

lim
T→∞

βTu′(cT )kT+1 = 0
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Example - A ‘Cake-eating’ problem

• Constrained optimization problem

max
{ct}∞t=0

=

∞∑
t=0

βtct

subject to

Wt+1 = R(Wt − ct) ∀t , W0 > 0 , Wt+1 ≥ 0

• Suppose βR < 1, then eat the whole cake today. This is fine.

• Suppose βR > 1, then defer consumption every period. This seems weird.

... as t→∞ we never eat the cake?

• Transversality condition - PDV of future cake has to be zero

lim
T→∞

βTWT+1 = 0
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Full solution

• Initial conditions

k0 > 0

• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

ct + kt+1 = f(kt) + (1− δ)kt

• Transversality condition

lim
T→∞

βTu′(cT )kT+1 = 0
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Characterizing the solution
1. Steady state

- Solve (c, k) as a function of parameters of the model

- If we change a parameter in the economy, how does the steady state change?

→ Steady state comparative statics

2. Dynamics

- Is the steady state globally stable ?

- What determines the local dynamics around steady state?

- From steady state, if we change a parameter, how does the economy evolve?

→ Dynamic comparative statics

• PS2 - Solution for u(c) = log(c), δ = 1, f(k) = Akα
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1. Steady state

• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

ct + kt+1 = f(kt) + (1− δ)kt

Golden-rule? Now redundant

There are no left over ‘policy variables’ like the savings rate for the planner to choose.

Monetary economics (Prof. Uhlig) - Policy parameters return!

Central bank rule for nominal interest rates: it = φy ŷt + φππt
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1. Steady state

• Euler equation

u′(c) = βu′(c)
[
f ′(k) + (1− δ)

]
• Resource constraint

c+ k = f(k) + (1− δ)k

Golden-rule? Now redundant

• There are no left over ‘policy variables’ like the savings rate for the planner to choose.

• Monetary economics (Prof. Uhlig) - Policy parameters return!
• Central bank rule for nominal interest rates: ît = φy ŷt + φππt
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1. Steady state

• Euler equation

u′(c) = βu′(c)
[
f ′(k) + (1− δ)

]
• Resource constraint

c+ k = f(k) + (1− δ)k

Golden-rule? Now redundant

• There are no left over ‘policy variables’ like the savings rate for the planner to choose.

• Monetary economics (Prof. Uhlig) - Policy parameters return!
• Central bank rule for nominal interest rates: ît = φy ŷt + φππt
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1. Steady state

• Euler equation

u′(c) = βu′(c)
[
f ′(k) + (1− δ)

]
• Resource constraint

c+ k = f(k) + (1− δ)k

Golden-rule? Now redundant

• There are no left over ‘policy variables’ like the savings rate for the planner to choose.

• Monetary economics (Prof. Uhlig) - Policy parameters return!
• Central bank rule for nominal interest rates: ît = φy ŷt + φππt
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1. Steady state
• Euler equation

f ′(k) =
1− β
β

+ δ Solow Golden Rule: f ′(k
∗
) = δ =⇒ k < k

∗

• Resource constraint

c = f(k)− δk

Comparative statics

↓ β Value future output relatively less so ↓ k.

Also lower ↓ c.

↑ δ Wasted savings, requires higher ↑ f ′(k), so ↓ k.

Also lower ↓ c

Why is c increasing in k around (c, k)?
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1. Steady state
• Euler equation

f ′(k) =
1− β
β

+ δ Solow Golden Rule: f ′(k
∗
) = δ =⇒ k < k

∗

• Resource constraint

c = f(k)− δk

Comparative statics

↓ β Value future output relatively less so ↓ k.

Also lower ↓ c.

↑ δ Wasted savings, requires higher ↑ f ′(k), so ↓ k.

Also lower ↓ c
Why is c increasing in k around (c, k)?
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2. Dynamics - Phase diagram
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

ct + kt+1 = f(kt) + (1− δ)kt

• No change in consumption: ct+1 = ct

1 = β
[
f ′(kt) + (1− δ)

]
→ kt = k

• No change in capital: kt+1 = kt

ct = f(kt)− δkt

26



2. Dynamics - Phase diagram

∆ct = 0 : kt = k

∆kt = 0 : ct = f(kt)− δkt
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2. Dynamics - Phase diagram

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
ct + kt+1 = f(kt) + (1− δ)kt
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2. Dynamics - Phase diagram

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
If kt+1 > k, then low MPKt+1, so ↑ ct, ↓ ct+1 so consumption is falling.
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2. Dynamics - Phase diagram

ct + kt+1 = f(kt) + (1− δ)kt
If ct > c(kt), then consuming more than f(kt)− δkt, so capital is falling.
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2. Dynamics - Phase diagram

• To the N.W. (↖) we violate the resource constraint
• Increasing marginal product of capital, increasing consumption, at some point
ct > f(kt)
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2. Dynamics - Phase diagram

• To the S.E. (↘) we violate the transversality consition
• Decreasing marginal product of capital, falling consumption, u′(ct)→∞ despite

accumulating capital
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2. Dynamics - Saddle path

• On the saddle-path all equilibrium conditions hold
• Economy converges to steady-state
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2. Dynamics - Comparative statics
• If initially in steady-state and we permanently change a parameter

(i) What changes the ∆ct = 0 and ∆kt = 0 lines?
(ii) Is there a new saddle path?
(iii) Consumption jumps to new saddle path and economy converges (at a decreasing rate) toward steady-state.

- Should be able to describe this behaviour in terms of the location of the new steady state (why has k
increased? decreased?), and optimal capital accumulation decision of the household along the transition path.

34



2. Dynamics - Saddle path

Parameters - α = 0.50, δ = 0.20, β = 0.90, f(k) = Ak0.50, u(c) = log c
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2. Dynamics - Saddle path

Parameters - α = 0.50, δ = 0.20, β = 0.90, f(k) = Ak0.50, u(c) = log c

Can we say something about what governs how quickly the economy converges?
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2. Dynamics - Saddle path

Parameters - α = 0.50, δ = 0.20, β = 0.90, f(k) = Ak0.50, u(c) = log c
Can we say something about what governs how quickly the economy converges?
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2. Dynamics - Local dynamics
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)kt+1

]
• Resource constraint

kt+1 = f(kt) + (1− δ)kt − ct

• Local approximation of equilibrium conditions around steady-state
• Euler equation - δ = 1{

u′′(c)c

u′(c)

}
ĉt =

{
βu′′(c)f ′(k)c

u′(c)

}
ĉt+1 +

{
βu′(c)f ′′(k)k

u′(c)

}
k̂t+1

• Resource constraint{
1k

k

}
k̂t+1 =

{
f ′(k)k

k

}
k̂t −

{
c

k

}
ĉt
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2. Dynamics - Local dynamics
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)kt+1

]
• Resource constraint

kt+1 = f(kt) + (1− δ)kt − ct

• Local approximation of equilibrium conditions around steady-state
• Euler equation{

u′′(c)c

u′(c)

}
ĉt =

{
u′′(c)c

u′(c)

}
ĉt+1 +

{
f ′′(k)k

f ′(k)

}
βf ′(k)k̂t+1

• Resource constraint{
k

k

}
k̂t+1 =

{
k

βk

}
k̂t −

{
c

k

}
ĉt
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2. Dynamics - Local dynamics
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)kt+1

]
• Resource constraint

kt+1 = f(kt) + (1− δ)kt − ct

• Local approximation of equilibrium conditions around steady-state
• Euler equation{

u′′(c)c

u′(c)

}
ĉt =

{
u′′(c)c

u′(c)

}
ĉt+1 +

{
f ′′(k)k

f ′(k)

}
k̂t+1

• Resource constraint{
k

k

}
k̂t+1 =

{
k

βk

}
k̂t −

{
c

k

}
ĉt
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2. Dynamics - Local dynamics
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

kt+1 = f(kt) + (1− δ)kt − ct

• Local approximation of equilibrium conditions around steady-state

• Euler equation - u′(c) ∝ c−σ, f ′(k) ∝ kα−1

−σĉt = −σĉt+1 + (α− 1)k̂t+1

• Resource constraint

k̂t+1 =
1

β
k̂t −

c

k
ĉt
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2. Dynamics - Local dynamics
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

kt+1 = f(kt) + (1− δ)kt − ct

• Local approximation of equilibrium conditions around steady-state

• Euler equation - u′(c) ∝ c−σ, f ′(k) ∝ kα−1

ĉt+1 − ĉt =

{
−1− α

σ

}
k̂t+1

1. ↑ σ more curvature in utility function

• Smoother consumption → Smaller rate of change in ĉt for any k̂t
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2. Dynamics - Local dynamics
• Euler equation

u′(ct) = βu′(ct+1)
[
f ′(kt+1) + (1− δ)

]
• Resource constraint

kt+1 = f(kt) + (1− δ)kt − ct

• Local approximation of equilibrium conditions around steady-state

• Euler equation - u′(c) ∝ c−σ, f ′(k) ∝ kα−1

ĉt+1 − ĉt =

{
−1− α

σ

}
k̂t+1

2. ↓ α more curvature in production

• Marginal product of capital more responsive to k̂t
• Consumption changes more quickly in response to k̂t 6= 0

43



2. Dynamics - Local dynamics

• Rearrange these (use R.C. to sub k̂t+1 in E.E.)[
ĉt+1

k̂t+1

]
= A

[
ĉt
k̂t

]
which implies that

[
ĉt
k̂t

]
= At

[
ĉ0

k̂0

]
• Eigen-vector decomposition Av1 = λ1v1 → AV = V Λ[

ĉ2

k̂2

]
= V ΛV −1︸ ︷︷ ︸

A

V ΛV −1︸ ︷︷ ︸
A

[
k̂0

ĉ0

]
= V Λ2V −1

[
ĉt
k̂t

]
• In the limit as t→∞

lim
t→∞

[
ĉt
k̂t

]
= lim

t→∞
V

[
λt1 0
0 λt2

]
V −1

[
ĉ0

k̂0

]
• Macroeconomics models will deliver 0 < λ1 < 1 < λ2

- Why? Discounting β < 1, Concavity u′′ < 0, f ′′ < 0
- See: PS2 Q5(c)
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2. Dynamics - Local dynamics
• Macro problems will deliver 0 < λ1 < 1 < λ2

• Now we can write an expression for kt and ct, using At = V ΛtV −1

• Recall the simple rule for the inverse of a 2× 2 matrix![
ĉt
k̂t

]
=

1

det(V )

[
v11 v21
v12 v22

] [
λt1 0
0 λt2

] [
v22 −v21
−v12 v11

] [
ĉ0
k̂0

]
• If −v12ĉ0 + v11k̂0 6= 0, then gets multiplied by the explosive eigen value λ2

• Will continue to propogate, sending k̂t and ĉt to either infinity or zero!

• Both cases violate equilibrium conditions!

• The saddle path consists of a value of ĉ0 such that given k̂0, these conditions are not violated.
This explosive eigen value is killed off.

−v12k̂0 + v11ĉ0 = 0 → ĉ0 = (v11/v12)× k̂0
• PS2 Q5 - Compute v11, v12 by hand for δ = 1, u(c) = log c, f(k) = kα

• Bonus - Show k̂t = λt1k̂0. So λ1 explicitly governs rate of convergence(!!!)
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2. Dynamics - Local dynamics

• Canvas - Some simple code NCMEigensolve.m that produces these figures. Play
around with the code!

• What causes faster convergence: (↓ α, ↓ σ)? Does the RHS plot diverge in line with
theory for ĉ0 6= γk̂0? What happens when k̂0 ≶ 0? Write some code to plot λ1 as a
function of β, σ, α, what do you learn? Have fun!
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3. Dynamics - Following a shock

• How does the economy respond following a shock?

• What if that shock is permanent or transitory?

• What if it is anticipated or unexpected?

• How might this behavior help us understand what generates business cycles?

• Recall: Yt, Ct and It all drop during a recession, increase during a boom

• (i) Change in k0, (ii) Changes in β, (iii) Changes in A
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3. Dynamics - ↓ k0 - Unexpected

↓ c0 to reaccumulate capital stock. If ↑ σ or ↑ α, then smaller drop and slower rebuild.
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3. Dynamics - Changes in patience β

- Resource constraint

ct + kt+1 = Af(kt) + (1− δ)kt + g

- Euler equation

u′(ct) = βtu
′(ct+1)

[
Af ′(kt+1) + (1− δ)kt+1

]
- ∆ct = 0 locus shifts

- ∆kt = 0 locus is unaffected
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3. Dynamics - ↑ β - Unexpected - Permanent

↓ c0 to accumulate capital to reach higher steady-state k
′

and c′.
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3. Dynamics - ↑ β - Expected - Permanent

↓ c0 and accumulate capital to smooth effect on consumption.
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3. Dynamics - Changes in productivity A

- Resource constraint

ct + kt+1 = Atf(kt) + (1− δ)kt + g

- Euler equation

u′(ct) = βu′(ct+1)
[
Atf

′(kt+1) + (1− δ)kt+1

]
- ∆ct = 0 locus shifts

- ∆kt = 0 locus shifts
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3. Dynamics - ↓ A - Unexpected - Permanent

↓ c0 and use up capital to smooth transition to lower c′, k
′
.
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3. Dynamics - ↓ A - Expected - Permanent

↓ c0 and accumulate capital to smooth effect on consumption.
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3. Dynamics - ↓ A - Unexpected - Transitory

↓ c0 and use up capital to smooth transition to lower c′, k
′
.
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3. Dynamics - ↓ A - Expected - Transitory

↓ c0 and accumulate capital to smooth effect on consumption.
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