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This lecture

Issues with Solow model
Neoclassical model
- Ramsey (1928), Cass (1965), Koopmans (1965)
Optimality conditions
Steady state + Transition dynamics

Next: Decentralized economy, Welfare Theorems, Government



Recap of Solow model

Equilibrium conditions (without growth!)
ye = Af(ke) = Ak}

Yo = ¢+
ktyr = (1= 0)kt + & f (k)
cty = (1 - f)yt
Solution
ki1 = g(ke)

Steady state
k=g(k) , ¢=f(k)—6k — Golden rule — <E*,E*)

Transition dynamics
~ 0g(k) k~ . Of(k) k~ .
]{It+1 = g(f) k‘t s Ct — Mk‘t = Olk’t
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Issues with Solow model

¢ Positive (descriptive)
® Within country over-time differences in g

® Cross country differences in g; as functions of parameters {&,6, a, A}

® Normative

® Households don’t optimize — Bad for policy

® E.g. If A increases for a few periods, shouldn’t £ respond? Maybe households would like
to save some of a temporary increase in their income?



Issues with Solow model
® Neoclassical model
® Allow households to make savings decisions
® Control the division of output into consumption and investment
ce+ir = f(ke)
kt-i—l = (1 - 5)kt + it
® Economy of optimizing individuals — Good for policy
® Time series of endogenous variables {c;, ys, ke, i1 }32, determined by parameters and
initial conditions.
® Keep other features of Solow — Still match growth facts!

® Work horse model in modern macroeconomics
v' 4 Welfare - Centralized vs. Decentralized economy
v" 4+ Labor supply
v 4 Stochastic processes for A;. Real Business Cycle model
v" + Heterogeneity. Study inequality.
x4+ Fiscal policy - ‘Ramsey problem’
x + Monetary policy - ‘New Keynesian models’. ‘Nominal’ Business Cycle model
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Environment - Centralized
Time - Discrete t =0,1,2...
Agents - Representative household with N identical workers
Goods - One good can either be used for consumption or investment

Ci+1I; =Y,
Preferences - Utility of the household at date 0 is

S BUCLNY) , Be(0,1) , U(C,N) =u(Cr/Ny)
t=0

Technology - Constant returns to scale production technology
Y; = AF(K;, N;) = AKSN} .

Capital depreciates at rate
Kiyqn=01-6K¢+IL , o6€][0,1] , Ky>0
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Environment - Centralized
Time - Discrete t =0,1,2...
Agents - Representative household
Goods - One good can either be used for consumption or investment

e+ it =Yt

Preferences - Utility of the household at date 0 is
> Bluler) Be(0,1)
i—0 S———

Rate of time preference

Technology - Constant returns to scale production technology
ye = Af (k) = Akg".

Capital depreciates at rate §
kiy1=0—-0)ki+i , 6€]0,1] , ko>0
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Environment - Centralized
Time - Discrete t =0,1,2...
Agents - Representative household
Goods - One good can either be used for consumption or investment

ct+it =Yt
Preferences - Utility of the household at date 0 is

ZB u(er) = u(co) + Buler) + B2ulc) - - - + Bluler) + ...

Technology - Constant returns to scale production technology
ye = Af (k) = Akf.

Capital depreciates at rate
kip1=0—-0)ki+i, , 6€]0,1] , ko>0
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Problem

Household chooses sequences of {ct, kiy1}52

max Z Blu(cy)
t=0

subject to the series of constraints

Ct+kt+1§f(kt)+(1_5)kt ) t:071727"'

and initial conditions

ko >0



Problem - Lagrangean

e Constrained optimization problem

L= Bule) + > Nelf(ke) + (1= 0kt — e — kyy]
t=0 t=0

® First order necessary conditions
ct: 0 = B(c) — N
kt+1 : 0 = —)\t + )‘t+1 [f/(kt—i—l) + (1 - 5)]

® Combining conditions
0 = =B (c) + B (crpr) [ (kegr) + (1 = 6)]
u'(er) = Bu'(cerr) [f (k1) + (1= 9)]

10



Euler equation

® FKuler equation

u'(ee) = Bu'(cra1) [f' (kesr) + (1 = 6)]
® Interpretation - Perturbational method
® Suppose we have the optimal {c},k},,}2q
® Reduce consumption by ¢ units only today, i.e. at date ¢
® Loss in utility today is approx. u/(c})e u(cr) = u(cf) +u' () (e — ¢f)
® Plan: Take ¢, invest it in capital, consume proceeds tomorrow
® Two effects tomorrow (i) increase output by f’(k;,;)e, (ii) increase capital by (1 — d)e
® Gain in utility tomorrow approx. u/(c;1)[f'(kf 1)+ (1 —0)]e

® If {cf,k; 1} is optimal, then should be no change in total utility:
0= —u/(c{)e+ Bu'(ciyy) [f'(kipr) + (1= 06)] e
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Partial solution

® FKuler equation

w'(c) = Bu (cev1) [f' (keg1) + (1 —0)]
® Resource constraint

et +keyr = f(ke) + (1 —0)ke
® Initial conditions

ko >0
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Transversality condition

Household chooses sequences of {c;, kiy1}i—y  Truncated at T' < oo

T
maXZBtu(ct)
t=0
subject to the series of constraints
co+k < f(ko) + (1 — 5)]€0 , ko>0
cat+ke < flk)+(1—-0)k
cr+kryr < flhr) + (1= 8)kr

Issue - Household wants k71 infinitely negative
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Problem

Household chooses sequences of {ct, ki+1}i_g

T
max Z Blu(ct)
t=0

subject to the series of constraints

Ct+kt+1:f(kt)+(1—(5)kt s t:0,1,2,...

initial conditions
ko >0
and a non-negativity constraint on capital

kiz1 >0
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Transversality condition

Constrained optimization problem
T

L= Zﬁt u(c) + Z)\t[ (1—0)kt — ¢t — kt+1] + Z,Utkt+1

t=0
First order necessary conditions
c: 0 = B(ct) =N

kipr: 0 = =X+ Mg [f(kegr) + (1= 6)] +pue

krii: 0 = —Aptur
Multipliers and constraints

AM>0 0 = f(k)+(1—0)kt —ct — kg

=0 5 0 < ki
Complementary slackness conditions

0 = >\t |:f(kt) + (1 - 6)]{7,5 — Ct — kt+1

0 = [ktJrl}
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Transversality condition
Optimal cp

A = ﬁTu'(cT)
Optimal k711
=X = BT/ (cr)
Complementary slackness
BTu’(cT)kTH =0

The present discounted utility value of ‘left over’ resources must be equal to zero

We can generalize this to the infinite horizon case
lim B/ (cr)kry1 =0
T—o00
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Example - A ‘Cake-eating’ problem

Constrained optimization problem

o
¢
max = By
{et} 2, ;
subject to

Wt+1 = R(Wt — Ct) vt , Wy>0 Wt+1 >0

Suppose SR < 1, then eat the whole cake today. This is fine.

Suppose SR > 1, then defer consumption every period. This seems weird.
. as t — oo we never eat the cake?

Transversality condition - PDV of future cake has to be zero

lim BT Wrp,1 =0
T—o00
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Full solution

Initial conditions

ko >0
Euler equation

u'(cr) = Bu' (ceyn) [f' (K1) + (1 = 0)]
Resource constraint

ct + kepr = f(ke) + (1= 6)ky
Transversality condition

lim 87/ (er)kri1 =0
T—00
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Characterizing the solution
1. Steady state

- Solve (¢, k) as a function of parameters of the model
- If we change a parameter in the economy, how does the steady state change?
— Steady state comparative statics
2. Dynamics
- Is the steady state globally stable ?
- What determines the local dynamics around steady state?
- From steady state, if we change a parameter, how does the economy evolve?

— Dynamic comparative statics

e PS2 - Solution for u(c) = log(c), 6 =1, f(k) = Ak
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1. Steady state
® FKuler equation

u'(cr) = B/ (ceyn) [f (K1) + (1 = 0)]

® Resource constraint

et + ki1 = f(k) + (1= 0)ky
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1. Steady state
e Euler equation
u'() = pu' (@) [f' (k) + (1 - 9)]
® Resource constraint

c+k=fk)+(1-90k
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1. Steady state
® FKuler equation
W' (e) = Bu'(@) [ (k) + (1 - 9)]
® Resource constraint
c+k=fk)+(1-90k
Golden-rule? Now redundant

® There are no left over ‘policy variables’ like the savings rate for the planner to choose.
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1. Steady state

® FKuler equation

u'(e) = Bu'(e) [f'(k) + (1 — )]
® Resource constraint

c+k=fk)+(1-90k
Golden-rule? Now redundant
® There are no left over ‘policy variables’ like the savings rate for the planner to choose.
® Monetary economics (Prof. Uhlig) - Policy parameters return!

e Central bank rule for nominal interest rates: i; = Oyt + Onr
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1. Steady state

® FEuler equation

f'(k) = 1;8 +0 Solow Golden Rule: f/(k) =86 — k<k

® Resource constraint
¢ = f(k) — 6k
Comparative statics

1 8 Value future output relatively less so | k.
Also lower | ¢.

16 Wasted savings, requires higher 1 f/(k), so | k.
Also lower | ¢
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1. Steady state

® FEuler equation

f'(k) = 1;8 +0 Solow Golden Rule: f/(k) =86 — k<k

® Resource constraint
¢ = f(k) — 6k
Comparative statics

1 8 Value future output relatively less so | k.
Also lower | ¢.

16 Wasted savings, requires higher 1 f/(k), so | k.
Also lower | ¢
Why is ¢ increasing in k around (¢, k)?
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2. Dynamics - Phase diagram

Euler equation

u'(cr) = Bu'(cer1) [f (Be1) + (1 —0)]
Resource constraint

ct + ki1 = f(ke) + (1= 0)k
No change in consumption: ciy1 = ¢

1= B[f (k) +(1-8)] — k=F

No change in capital: ki11 = k¢

Ct = f(k’t) — Okt
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2. Dynamics - Phase diagram

ACtIOZ k?t == E
AkﬁtZOI Ct = f(k?t)—ékt

3.5

ACtZO

2.5F

Akt:O

Consumption per worker ¢
—
wt

0 2 k 4 6 8 10 12
Capital per worker k
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Consumption per worker ¢

2. Dynamics - Phase diagram

u(cr) = Bu(cepr) [ (K1) + (1 —6)]
atkitr = flk)+(1—0)k

3.5

3L

2.5F

2L

1.5F

—_
T

(=}

ACt =0
Ak’t =0 7
/’\
k zl é é 1‘0 12

Capital per worker k
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2. Dynamics - Phase diagram

u(cr) = Bu(cipr) [ (K1) + (1 = 6)]
If ks 1 >k, then low MPK; .1, s0 T ¢;, | ¢;11 so consumption is falling.

3.5

ACtZO
3k

t v

1.5+ Akt - 0
/—\

0.5+ T l
0 2k 4 6 8 10 12
Capital per worker k
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2. Dynamics - Phase diagram

etttk = flke) +(1—6)k
If ¢; > ¢(k¢), then consuming more than f(k;) — 0k, so capital is falling.

3.5

A(Jt:O
3k

BP -

1.5+ Akf - 0

—
T

Consumption per worker ¢

. I

0 2 I 4 6 8 10 12
Capital per worker k
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2. Dynamics - Phase diagram

e To the N.-W. (\) we violate the resource constraint
® Increasing marginal product of capital, increasing consumption, at some point

ct > f(kt)

3.5 .
ACt =0

P B

1.5+ Akt = 0

—_
T

Consumption per worker ¢

. I~

0 2 k4 6 8 10 12
Capital per worker k

(=}
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2. Dynamics - Phase diagram

e To the S.E. (\,) we violate the transversality consition
e Decreasing marginal product of capital, falling consumption, u'(¢;) — oo despite
accumulating capital
3.5

AC[:()
3+

P -

1.5+ Akf = 0

—
T

Consumption per worker ¢

L I

0 2 I 4 6 8 10 12
Capital per worker k

o
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2. Dynamics - Saddle path

® On the saddle-path all equilibrium conditions hold
® Economy converges to steadv-state

Consumption per worker ¢

3.5

Ac; ‘: 0
7

Aktio

* I~

k 4 6 8 10 12
Capital per worker k
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2. Dynamics - Comparative statics

® If initially in steady-state and we permanently change a parameter
(i) What changes the Ac; = 0 and Ak; = 0 lines?
(ii) Is there a new saddle path?
(iii) Consumption jumps to new saddle path and economy converges (at a decreasing rate) toward steady-state.
- Should be able to describe this behaviour in terms of the location of the new steady state (why has k
increased? decreased?), and optimal capital accumulation decision of the household along the transition path.

3.5 T T T ; T

Ac; =0
3L 1

2&6j *1 1

151 Ak; =0 1

Consumption per worker ¢

0 2 k 4 6 8 10 12
Capital per worker k
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2. Dynamics - Saddle path

3.5 : : : : : e e S B B B S
()
s 3t 1 512
. £
i2.5— g ”g 1
[
2 &
5 2+ 1 §0.8
= B
S 15¢ 1 = 0.6
Z 8
3 k:
Z 1} 3 £ 0.4
: :
3 o
O 05t 1 502
0 L L L L L 0 L L L L L L L L L L L L L L L I T
0 2 4 6 8 10 12 012345678 910111213141516171819
Capital per worker - k; Period - t

Parameters - a = 0.50, § = 0.20, 8 = 0.90, f(k) = Ak%5% u(c) = logec
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2. Dynamics - Saddle path

3.5 -
[}
s 3t ] £ 01
. 7
g L ] 5.
£ 25 g 02
S 2
Z 2 0.3
et B i =U.
2 :
= o
g15] ] =04
pe] .S
e . g
g 1l 7 205
wn [}
=1 =]
Q )
O 05) % ] 06
0 : : ‘ : : 07
0 2 4 6 8 10 12

Capital per worker - k;

Parameters - o = 0.50, § = 0.20, 8 = 0.90, f(k) = Ak"*° u(c) = logc
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2. Dynamics - Saddle path

3.5 : : : : : 0 : : : : : : : : : : : :
[}
? 3t 1 § -0.1
g 250 ] g -02
g 3
E .
5 2+ 1 % -0.3
= &
S 15¢ 1 o -0.4
2 2
/\ <
g 1} 3 205
: <
S %
O 05) % ] 06
0 L L L L L _0'7 L L L L L L L L L L L L
0 2 4 6 8 10 12 0O 1 2 3 4 5 6 7 8 9 10 11 12 13
Capital per worker - k; Period - t

Parameters - o = 0.50, § = 0.20, 8 = 0.90, f(k) = Ak"*° u(c) = logc
Can we say something about what governs how quickly the economy converges?
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2. Dynamics - Local dynamics

Euler equation

' (cr) = Bu'(copr) [f (ke1) + (1 = 0)krsa]
Resource constraint

ki1 = f(ke) + (1 =0kt — ¢t

Local approximation of equilibrium conditions around steady-state
Euler equation - 6 =1

u/(¢) u’ (@ u/ (c)

Resource constraint

(e {205 )
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2. Dynamics - Local dynamics
Euler equation
' (cr) = B (cean) [ (K1) + (1 — 6) k1]

ReSOurce COnStraint
ki1 = f(ke) + (1 =8k — ¢

Local approximation of equilibrium conditions around steady-state
Euler equation

(5} 2o {558} o

Resource constraint

k) ~ k)~ c) .
{k}kt“{mf}’“{k}“
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2. Dynamics - Local dynamics

Euler equation

' (cr) = B (cean) [ (K1) + (1 — 6) k1]
Resource constraint

ki1 = f(ke) + (1= )kt —

Local approximation of equilibrium conditions around steady-state
Euler equation

(e (e (e

Resource constraint

k) ~ k)~ c) .
{k}kt“{mf}’“{k}“
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2. Dynamics - Local dynamics
® Fuler equation

u'(cr) = Bu' (ceyn) [f' (K1) + (1 = 0)]

® Resource constraint
kty1 = f(ke) + (1 = )kt — et

® [ocal approximation of equilibrium conditions around steady-state
® Euler equation - v/(c) oc ¢, f/(k) oc k@1
—0¢; = —0Cq1 + (0 — 1)k

® Resource constraint

~ 1~
ki1 = Bkt -

&

= ol
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2. Dynamics - Local dynamics

Euler equation

' (¢) = Bu' (cop1) [ (keyr) + (1= 0)]
® Resource constraint

ki1 = f(k) + (1= 0)kt — ¢

Local approximation of equilibrium conditions around steady-state

Euler equation - u/(c) oc ¢, f'(k) oc k71

~ ~ l—a|~
Ct+1 — Ct = § — k‘t+1

o

1. T o more curvature in utility function
® Smoother consumption — Smaller rate of change in ¢; for any 7{:\,5
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2. Dynamics - Local dynamics

Euler equation

u'(cr) = Bu/(copr) [f (kegr) + (1= 6)]
® Resource constraint

ki1 = f(ke) + (1= 0)ke — ¢

Local approximation of equilibrium conditions around steady-state

Euler equation - u/(c) oc ¢, f'(k) o< k71

. ~ l—al]~
Ct41 =G =~ 1

2. | a more curvature in production

® Marginal product of capital more responsive to Et
e Consumption changes more quickly in response to Et #0
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2. Dynamics - Local dynamics

Rearrange these (use R.C. to sub 7<:\t+1 in EE.)

|kt k¢

Et“] =A [/C\t} which implies that [g] = A {(AO}

ot k‘()

Eigen-vector decomposition Av; = \jv;y = AV = VA

|2

In the limit as t — o
. e
1 ~
im M

t—o00 t—o00

A} — VAV LVAV! [EO} — VA2Y! [9]
N——"—— [

= lim V

0 Ky

o v

Macroeconomics models will deliver 0 < A\; < 1 < Ay
- Why? Discounting 8 < 1, Concavity u” <0, f” <0

- See: PS2 Q5(c)
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2. Dynamics - Local dynamics
Macro problems will deliver 0 < A1 <1 < Ao
Now we can write an expression for k; and ¢;, using A* = VAV 1!

Recall the simple rule for the inverse of a 2 x 2 matrix!

:C:t _ 1 vir var| (AL 0] [ v —uam EO

ky det(V) |via v22] [0 AS| [~vi2  wvin | [ko
If —vioco + 1«‘11%0 # 0, then gets multiplied by the explosive eigen value Ao
Will continue to propogate, sending %t and ¢; to either infinity or zero!

Both cases violate equilibrium conditions!

The saddle path consists of a value of ¢y such that given %0, these conditions are not violated.
This explosive eigen value is killed off.

_'U127f\0 +vnico=0 — ¢ = (vi1/v12) X Eo
PS2 Q5 - Compute v11,v12 by hand for 6 = 1, u(c) =loge, f(k) = k*
Bonus - Show k\t = Aﬁ@o. So A1 ezplicitly governs rate of convergence(!!!)
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2. Dynamics - Local dynamics

® (Canvas - Some simple code NCMEigensolve.m that produces these figures. Play
around with the code!

® What causes faster convergence: (| «,] 0)? Does the RHS plot diverge in line with
theory for ¢y # 7k07 What happens when ko < 07 Write some code to plot A\; as a

function of 8, o, a, what do you learn? Have fun!

-0.2

-0.4

-0.6

A Theory kg1 = X, k‘o, & = vhi
y ——Capital k,
- - Consumption &
........ Output 7),5
10 15 20

B Chedk: @1 = Ady, & = kg

-0.2

-0.4

-0.6
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3. Dynamics - Following a shock

How does the economy respond following a shock?
What if that shock is permanent or transitory?

What if it is anticipated or unexpected?
How might this behavior help us understand what generates business cycles?

® Recall: Y;, C; and I; all drop during a recession, increase during a boom

(i) Change in ko, (ii) Changes in $, (iii) Changes in A
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3. Dynamics - | k) - Unexpected

1 co to reaccumulate capital stock. If T ¢ or 1 «, then smaller drop and slower rebuild.

Ac; =0 e

ct

\@

Co

ket

ko
ke 0 To
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3. Dynamics - Changes in patience [

Resource constraint

ct+ ki1 =Af(k)+ (1 =8kt + g
Euler equation

u'(cr) = B (o) [AF (kepr) + (1= 0)keya]
Ac; = 0 locus shifts

Ak; = 0 locus is unaffected
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3. Dynamics - 1 § - Unexpected - Permanent

1 co to accumulate capital to reach higher steady-state % and .

A =0, B Ac=0, 8 p

Ak, =0

1
1
1
’ 1
1
1
1
1

e

TD T]

~
=~
o
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3. Dynamics - 1 3 - Expected - Permanent

} co and accumulate capital to smooth effect on consumption.

A =0, B Ac=0, 8 p

Ak, =0

1
1
1
’ 1
1
1
1
1

~
N
<
~
4—l
o [
3

TD T]

~
=~
o
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3. Dynamics - Changes in productivity A

Resource constraint

ci + ki1 =Aif(ky) +(1—=06)ks + g
Euler equation

w'(cr) = Bu/(cogr) [Acf (kes1) 4+ (1 — 0)keq1]
Ac; = 0 locus shifts

Ak; = 0 locus shifts
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3. Dynamics - | A - Unexpected - Permanent

1 co and use up capital to smooth transition to lower ¢, K.

Ac;=0, A" Aeg=0,A4 7 A

Ct

Ak, =0, A
ke
k
El
ks 0 To
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3. Dynamics - | A - Expected - Permanent

} co and accumulate capital to smooth effect on consumption.

Ay =0, A" Ac=0,A4 L A
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3. Dynamics - | A - Unexpected - Transitory

1 co and use up capital to smooth transition to lower ¢, K.

Ac,=0, A A =0, A

C
ke
BV
]; /

0 1T T
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3. Dynamics - | A - Expected - Transitory

} co and accumulate capital to smooth effect on consumption.

Ac,=0, A Ae=0,4

Ct

ks 0 To T
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